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Force platform measures are mainly presented as 
temporal waveforms. One of the most commonly used 
methods for analyzing these waveforms involves the 
extraction of specific parameters: the waveform value at 
significant points, such as the maximum ground forces 
and the peak joint kinematic and kinetic parameters 
(Goble et al., 2003; Lelas et al., 2003; White et al., 1999). 

One of the clinical applications of movement 
analysis is to identify normal patterns, such as ground 
reaction force patterns. These patterns are used to 
establish deviations or differences in patients (Simon, 
2004). By doing so, different patterns are used to detect 
problems or injuries in patients, or to confirm the benefits 
of rehabilitation treatments. The normal pattern is the 
mean value measured using healthy subjects. The 
identification of problems or injury detection is based on 
significant differences between patient values and normal 
patterns. 

To obtain normal patterns it is necessary to reduce 
the data variability not affected by pathological issues. 
The normal pattern is for similar subjects: children, adults, 
and so on. The variability produced by the subject’s 
weight is reduced using body weight units. Time is 
normalized to reduce the effect of the duration of the 
movement. Velocity also increases variability. For this 
reason it is necessary to compare data measured at similar 
velocities (Keller et al., 1996; Lelas et al., 2003; 
Stansfield et al., 2006). But patients walk at different 
velocities than healthy counterparts, usually lower 
velocities (Lelas et al., 2003). 

One of the most commonly presented solutions to 
the velocity problem that frequently appears in the 
literature is regression analysis. The aim of the regression 

analysis is to predict normal pattern values for the walking 
velocity of patients using measurements taken from 
healthy subjects over an appropriate velocity range 
(Hanlon & Anderson, 2006; Lelas et al., 2003). This type 
of analysis does not refer to all the information included in 
waveforms. Furthermore, it is difficult to extract 
parameters from pathological waveforms (Chau, 2001; 
White et al., 1999) in that the waveforms of patients may 
differ greatly from those of healthy people, with the 
possibility that it may prove very difficult to identify the 
same parameters obtained from normal waveforms. 

Instead of extracting discrete parameters from 
waveforms, it is possible to analyze the complete 
waveform by means of functional data analysis (FDA). 
The FDA technique applies methods of multivariate 
statistics, such as ANOVA or regression analysis, but 
works with the whole function as a piece of data. 

The aim of this paper is to compare the results 
obtained using nonfunctional regression analysis 
(regression with discrete parameters) with those obtained 
with functional regression analysis, and hence 
demonstrate the advantages of functional analysis. 

Methods 
To illustrate the application of the functional linear 
regression, we have used a data set published by Lafuente 
et al. (2000). The data set analyzed in our study is the 
vertical ground reaction force of 27 healthy male subjects 
walking at three different but self-selected speeds: a 
normal freely selected speed and two imposed cadences 
whose rhythms were suggested to the subject by asking 
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him to walk slightly faster and slightly slower than usual. 
The subject wore his normal street shoes for the test. 

The velocity obtained ranged from 0.9 to 1.9 m s−1. 
The vertical force was normalized with the subject’s body 
weight, and the ground reaction force was expressed as a 
percentage of that body weight. 

To compare the functional regression and 
nonfunctional regression analyses, we selected three 
parameters: Fz1max (first maximum vertical force), 
Fz2max (second maximum vertical force), and Fzmin 
(minimum vertical force between Fz1max and Fz2max). 

Functional and standard regression analyses are 
carried out following the same smoothing process. The 
smoothing process is conducted using a least-squares 
fitting technique, which selects the best coefficient of the 
60 B-spline functions, as described in Page et al. (2006). 

The functional data analysis performed comprises 
two steps: (A) linear time normalization and (B) 
functional regression analysis. 

Linear time normalization consisted of assigning 
time values from 0 to 100, where 0 is the initial contact 
(heel strike) on the force platform, and 100 is the end of 
the forefoot contact. These values were selected using a 
threshold of 5% of the maximum vertical force. Linear 
time normalization is appropriate for reducing variability 
when the correlation between phase and timing variables 
is high (Page & Epifanio, 2007). In this case, the 
correlation was >0.9. 

The functional regression analysis for the vertical 
ground reaction force (Z) is based on the following model: 

( ) ( ) ( ) ( ) ( )ˆ0 1i i i i iZ B t B t V t Z t tε ε= + × + = +      (1) 

where Vi is the velocity and εi(t) the residual function or 
error. In this case, t is not the real time, but the normalized 
time (0 to 100). the terms B0 and B1 are constants of the 
function calculated in the regression, whereas in FDA B0 
and B1 are time dependent. 

The model fit is assessed using the squared 
correlation function RSQ(t) and the F-ratio function F(t). 
RSQ(t) is equivalent to the R2 parameter of normal linear 
regression. The RSQ(t) values range from 0 to 1, as in R2. 
F(t) and RSQ(t) assess the fit of the model[AUQ1]. 
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where ( )Z t  is the mean function. 
The 5% significance level for the F distribution is 

calculated using the following degrees of freedom (df) 
(Ramsay 1997): 

df(error) = N – b 

df(regression) = N – df(error) – 1 

where N is the number of functions and b the number of 
independent functions included in the model (2 in this 

lineal model). For a detailed explanation of the functional 
linear model, see Ramsay’s book (Ramsay, 1997). 

The MATLAB functions used for this purpose are 
included in the package fda developed by J.O. Ramsay. 
The package fda can be freely downloaded from 
http://ego.psych.mcgill.ca/misc/fda/. 

Results 
The standard regression analysis shows a significant 
influence in velocity (V) for the three parameters (p < 
.05). The equations, F ratio, and R2 obtained are 

Fz1max = 0.6632 + 0.3315 × V;  F = 140.45, R2 = .406 

Fz2max = 0.8292 + 0.1857 × V;  F = 67.90, R2 = .263 

Fzmin = 1.1060 – 0.3065 × V;  F= 261.72, R2 = .567 

Keller (1996[AUQ2]) obtained slightly higher maximum 
R2 values (0.65) for male adults; however, here the 
velocity range is different and bigger: 1.5 to 3.5 m⋅s−1. 
Stansfield et al. (2006) finds similar or lower R2 values for 
children. 

By way of example, the regression of Fzmin is 
shown in Figure 1. The components of the functional 
model can be displayed graphically (Figure 2, left). The 
continuous line is the mean waveform. The line labeled 
“Velocity” is B1(t), that part of the functional model 
dependent on velocity. The line labeled “Constant” is 
B0(t), the part that is equal for all trials. 

The two components B0(t) and B1(t) could be 
interpreted as the “constant” and “dynamic” components 
of force. The constant component is similar to the curve 
obtained when the subject slowly positions himself over 
the force platform as if being weighed. The dynamic 
component resembles a spring damping a falling mass. 
Increased velocity means more energy damping, as if the 
mass falls from the highest point, and hence increased 
force oscillation. 

 
\ insert Figures 1, 2, and 3 \ 
 
The functional model enables a waveform to be 

predicted for each velocity. Peak and valley forces 
become more pronounced the greater the velocity (Figure 
2, right). The first peak force to appear is in response to 
faster velocities, but the second peak is only slightly 
delayed with faster velocities. 

Significant levels (F ratio) change throughout the 
force curves (Figure 3, right). The mean waveform is 
represented by a dashed line. The regression is always 
statistically significant, except at the beginning, the end, 
and at the transitions from peaks to valleys. 

The R2 or RSQ values have the same behavior as F-
ratio (Figure 3, left). Although peak values appear near 
the moments of Fz1max, Fz2max, or Fzmin, it is 
misleading to talk about R2 values for single points, such 
as Fz1max, Fz2max, or Fzmin. It would be more fitting to 
say that we have three local maximum values in three 
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different zones: R2 = .430 and F = 150.8 for the Fz1max 
zone, R2 = .345 and F = 105.3 for the Fz2max zone, and 
R2 = .577 and F = 273.0 for the Fzmin zone. These 
maximum R2 and F values are higher than the values 
obtained using standard linear regression. 

In addition, the statistical analysis of the functional 
model (Figure 3) provides more information than the 
single values obtained with the standard linear regression. 
We can observe how both the statistical significance level 
and the R2 values evolve along the force curve. Lower 
values are obtained at the beginning and end of the curve, 
and also during the transitions from peaks to valleys. 

Discussion 
The functional model not only provides estimates of 
discrete values, but also facilitates the interpretation of the 
change in the shape of the curve (Figure 2, right). Thus, 
the increase of the speed produces an increase of peak 
forces and a decrease in the minimum of force. These 
results are consistent with those obtained in the standard 
linear regression. The contribution of the functional 
approach is that it also provides information on changes in 
the temporal pattern. The increase of speed produces a 
slight advance of the first peak force and a slight delay in 
the onset of the second. This represents a change in 
strategy of the movement that was not appreciated with a 
standard linear regression. 

This study highlights the advantages of functional 
regression as a useful technique for studying the effect of 
walking velocity in force platform measures. As stated in 
the introductory paragrphs, functional data analysis 
considers all the information embedded in the waveforms 
and avoids the need to identify single points (discrete 
parameters). With regard to discrete value analysis, this is 
extremely beneficial due to the difficulty involved in 
extracting parameters from pathological waveforms (Chau 
2001, Page & Epifanio, 2007). 

We have demonstrated that functional linear 
regression provides not only more, but also better 
information than standard linear regression using 
parameters. Changes in waveforms can be visualized 
numerically and graphically (Figure 2). The components 
of the functional regression can be conducive to a clearer 
mechanical interpretation (constant and dynamic or spring 
components) than offered by nonfunctional regression. 
Furthermore, the statistical parameters and significance 
levels are slightly improved and their evolution can be 
observed along the waveform. Functional regression 
models also allow working with multiple variables (e.g., 
gender, age, height) to reduce variability and improve the 
curve fitting. 
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Figure 1 — Regression of Fzmin. 
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Figure 2 — Linear model (left). Velocity evolution (right).

0 20 40 60 80 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized time (%)

B
od

y 
w

ei
gh

t

 

 

0 20 40 60 80 100
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Normalized time (%)

B
od

y 
w

ei
gh

t

 

 

Constant − B0(t)
Velocity − B1(t)
Mean

Slow
Medium
Fast



Page 6 of 7 

Figure 3 — RSQ evolution (left). F ratio (right). Dashed lines correspond with mean vertical force (y-axis left). 
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Author Queries 
 
[AUQ1] Should the following be Equation No. 2? 
 
[AUQ2] The in-text citation "Keller 1996" is not in the reference list. Should this be Keller et al., 1996?
 


